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A RHEOLOGICAL MODEL OF A THIXOTROPIC
VISCOELASTOPLASTIC MEDIUM

G. Ya. Kunnos, V. M. Vasilevskii, ‘ UDC 532.135:536.242
and V. E. Mironov

A model is proposed which allows for the difference between instantaneous and slow deformations
during loading and unloading (of a mixture based on mineral binding substances). At different
constant deformation rates the model reflects the dependence of the relaxation phenomena on the
velocity and describes the thixotropy loop.

In our investigations of the rheological properties of foam — concrete mixtures by the creep method under
simple shear [1] and in the same medium (adobe) at a more mature age under axial compression and tension
f2], as well as under simple shear in the presence or absence of normal stress [3-5], the difference between
the instantaneous and slow deformations during loading and unloading was clearly and reliably traced. There-
fore, we proposed a new rheological element, a ratchet with an imperfection, which can be called a general-
ized St. Venant element [1-5], For the rheological description of media possessing fluidity this element is
connected to the Schofield ~ Scott-Blair model as shown in Fig. 1; the series connection of the second Newton —
St. Venant element to the indicated model provides the function ¥ = {(7) with a piecewise-linear character [1]
by which we approximate the nonlinear fluidity curve.

When 7, < 7 < T4 the equation of state of the model during loading, i.e., when the generalized St. Venant
elements do not come into play, has the form

U] . e N3 /
When 7)< T < 7, the second term and nyn;/n; drops out of the left~hand side of Eq. (1).

T l(f—tc)%{n:T‘nz(l 40y ) ]% + rungt =y + Ny (M)

1, 2 nonlinear fluidity charac-

6,< [ &) Fig. 1. Rheological model
2 of a thixotropic medium with
I teristic,
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Constant Stress and Unloading

Solving Eq. (1) with 7 = const (7, < 7 < 74) and the initial conditions

=0, p(0)=——, (2
¥ (0) .
=0, pO)=—+ 0 4 T
M2 M4 N3
we obtain

T T t T—T T—T¢
=—+—|1—exp (———)]—l— Ot t. 3
61 (52[ ny M M3 ()

When T4 < T < 7¢ the last term falls out of Eq. (3) (the solution of the equation of the Schofield — Scott-
Blair model).

Solving the equation ¥ +n,¥ = 0 to establish the law of reverse fluidity after unloading with 7 = 7,, and
using the initial conditions '

(7 Ty 17——;, T—1Tp T—Tc
t=t, f) = —+ ! 4+ 4, 4)
! ?(1) (51 (52 (51 ‘ Ut MNs
. T
t=t, v({)=— z,
2
we obfain
T—T. t—1 _1.:, ;2 T—T T—1Te ,
t— ) = 2 exp [ — ! )+——+——— + t 4 ty, (5)
v(E—1) G, p( 1 G G, M N3

where the first term denotes the inverse fluidity while the others denote the residual deformation. As follows
from (5), the residual deformation of the medium is caused by two deformation mechanisms, viscoplastic
deformation and the plastic deformation proper, inherent to a solid body and described using the generalized
St. Venant element.

To determine the 13 rheological characteristics of the model shown in Fig, 1 (its nine parameters and
the characteristics G, n,, n,, and 7* which depend on them) one must use the dependences v(t) = (1) (7 =
const) and ¥ = ¢(7) (¥ = const).

The values of ®;, Bz, G, Ny Ny A1, My Tp, and Te are determined by the generally known methods. The
four remaining characteristics can be calculated from the dependences

TABLE 1. Numerical Values of Rheological Characteristics of a
Gas — Concrete Mixture at the Moment of Maximum Swelling Rate
at Different Temperatures

Plasticity characteristics

—

swelling temp., |time after T | Te n T,
°‘C pouring, min Pa
40 16 570 1350 1100 716
50 : 8 670 1050 388 293
60 3 120 =

760 —

Viscosity characteristics

swelling temp., |time after, W I M2 ‘ " I M

°C pouring, min Pa-sec
40 16 4,20.10% 10.10% 3,85.104 4,26- 104
50 8 0,96.108 8,39.104 1,52.104 1,82.10%
60 3 0,60.10s —_ 0,26-10 0,27. 104

Elasticity, relaxation, and retardation characteristics

swelling temp., | time after G, | 6 | 6= | n | m
°c pouring, min Pa | sec
]
40 16 - 3,56+ 104 l 3,40.104 1,74.104 l 11,8 ] 2,9
50 8 2,46.10% 1,84.104 1,05.10¢ | 3,91 4,56
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An example of the rheological characteristics which we investigated is given in Table 1.

) ?1 =T — Gz %ZT—(ﬁzYa- (6)

n* =

From an analysis of Table 1 it is seen, first, that a gas — concrete mixture, in varying v by about an
order of magnitude, possesses a relatively low consistency, characterized by the "degree of structure destruc-
tion," i.e., by the ratio "1/’73 , which lies in the range of 10-15, Second, it is established that in the range of
temperature variation the values of the rheological characteristics decrease markedly with a decrease in tem-
perature, which agrees with the concepts of the molecular-kinetic theory in application to its use in deforma-
tion processes.

A Constant Deformation Rate (v = const = v) upon a

(Stepwise) Increase in Velocity

a) For T, < T < T, we have the equation
T_TO+[n1+”2(l+'ﬂi—)li"*“flmz"{?:ﬂﬂ- (7
M2 /

Taking 7 — 7, = exp {at), we obtain the characteristic equation of the homogeneous differential equation
and the values of its roots:

1+‘-’11+”2(1+j—i‘)]aﬁ‘”ﬂz“z:o. ®
l, N / )
r 2
——[’11'*"12 (1 + ﬂ-)] il/ ny+ny (1 -+ —m—*” — dayn,
Ay o= M2 / L N2 .
' 2n4n, 9
We introduce the designations
1 1
o= Oy = — - (10)
n %)

Using the solution of (7)

t
*
g

I 4 t |
T.= 17, + Cyexp (— _r?) + Cyexp (— ) +no (11)

and the initial conditions
t=0, ©(0)=0, t=0, 7(0) =G, (12)

we arrive at the expression

nins 1 1
‘r:TO"[ tl 2*((50,,0— ¥ To—'—:"'hv)‘{“"«'o'{“niv]exfl(; tt)
ni ni

fl;;-—ﬂi

n
-+ .n:n; .((ﬁwv—— l, TD—L, mv\) exp —«J,—- + . - 13
na —ni ny m na
b) For 7, < T < T4 we have an equation obtained after obvious transformations of (1):
M3 T2Ms M3 , M2 ). KEL : -
T— T+ ] — -<--————~]—~——-1——————>r+-—~—-1:= 132 Ve
¢ ( 6 G 6 | G G, T w
Taking T — T¢ = exp (at), we represent the characteristic equation and its roots in the form
[ M2 TeMls N3 N3ty :
l+(———+-—+——-+n)a+——<x2=0, (15)
G, ®.m, G, 2, G,
s, MM, s \ (M5, ol | Mg 2 nafs ) {o Nsta)!
a3_4={—(——+———+———+n +1/ (._+—-+-—+n)~4-—é——} g2zl 16
®, Ny G, 2} l’ G, M &, ? U e | s)
We introduce the designations
oy = — s = — (17
3 g
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Fig, 2, Dependence of shear stress
on deformation time (deformation)
for a viscoelastoplastic medium
described by the model of Fig. 1,
Vy > Vo > V3.

Proceeding as in case a), i.e., using the solution of Eq. (14) in the form ™= T, + Csexp (—— { )—}—
; n3
C,exp (- T) +mnsv and the initial conditions
ny

t=0, 10)=1 (=0, -&(0)=(va., (18)

we obtain the expression

P / * % . .
T=Te— [___”3”_4_ ((swv—‘r s v) + nsv] exp L—- 4 ) I N (@.,04‘— s v) exp (—~ d ) + 1g0. (19)
ny—1n3 ns na ny —nsz - n3 nyg J
Let us analyze the character of the dependence T(t) = f(v) on the example of (13) by investigating (11) at
the maximum. Equating the derivative of (11) to zero, we obtain

(’ no — 1) y ) Cine

€X P = k]
P o rng ) Cymi
from which
nlnaln (-— g‘nf )
t, = o (20)
ng —1m

Substituting C, and C, from (11), by using (12) we can ascertain that

.

* ok
* %, * ninsg T, (4
Iy = ning{fia — 1) 1{11’1 [—.-—*— ((va—"g—*"‘ s )

ng —n n ﬂ: J
T Mo | —In |2 ’(ﬁwv~——r‘3—~ﬂ‘f—) . (21)
Ny — 1y mn ny

We find the value of the maximum stress Tmax at t = tyy by replacing t by ty in (13),

The character of the dependence 7 = T(t) is presented in Fig. 2, from which it is seen that t,, 1("1) >
tm,(Ve) > tm,(v) and Tmax vy > Tmax(vy > Tmax (Vs when v, > v, > vy, Such a picture fully corresponds to
propositions known from fundamental work on rotary viscosimetry, such as [6], for liquidlike systems and
elastic liquids, and for viscoelastoplastic media in a certain range of values of v = const = v, not too low and
not too high. As seen from Fig. 2, one does not observe a monotonic rise of the function 7(t) without extrema
for 7 = const, characteristic for relaxation phenomena in a medium described by the Shvedov — Bingham model.
It is seen from Eq. (13) that a monotonic character (without a maximum) for the function 7(t), or, which is the
same thing, 7(y), is theoretically possible only for vanishingly low values of v. Moreover, it follows from
(13) and (19) that both relaxation and retardation mechanisms, inherent to the model proposed by us [1], take
part in the extremal dependence 7{t), which follows from the presence of the terms n; and n, in these expressions.

The procedure for determining the five independent rheological characteristics of Eq. (13) and the six
characteristics of Eq. (19) consists in the five- and six-fold variation of ¥ = const = v and the solution of the
system of algebraic equations using computer technology.

A Constant Deformation Rate (¥ = const = v) upon a

(Stepwise) Decrease in Velocity

Upon a stepwise or smooth decrease in ¥, the elements T, and T, enter into the work, For the first unloading
variant (Fig, 3a), allowing for the fact that AB = 73 — T, after simple geometrical transformations we obtain
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Fig, 3, Area of thixotropy loop: a) for !?I’QI > 175 — 7013 b) for
[Ty ol < T1g = 7,1,
?

AB Tg— T,

-

n* n*

BE =BPwy= n—;(rs—ra;
1

AE = BE — AB = (13— 10 (—ni—-— 1) = ﬂ’—(@——%},
M N3

where n* is determined from {6) and

At = CE =14+ L (1, — 7. (22)
s
With allowance for (22), in accordance with Eq. (1) transformed for the section 7y < 7 < 7, (see Fig. 3}, the
equation of the problem has the form

M4

\ 2

Ty s+ % (ts — T+ [n, 1 )] T —— 29

3

Taking

T—T, +_';1,2 + T (vs — 1) = exp (af), (24)
3

we obtain the characteristic equation in the form (8) and its roots in the form (9).

Using the solution of {23)

- t ¢
T Ty g — B (1 —TQ + Cyexp (— 7 )+C:exp (— s )+mv (25)
N ny na
and the initial conditions
t=0, TO0)=1T—T4 (=0, ©(0) = G.v (26)

we find

T=Ty— T2 _'l(TS"‘Tc}_}' {(1 + J‘i“\} T3 -— Ty — b Ty —~ Ny

s U] LE
*® ; 1
.__.”1_1’5.7__[6&0_‘(_ < (Ts_l_rs,.n_l__q;o__..m_fc_niv)J}
np — 1 71 yH UE] /
t niny | 1 1 0 AW 27)
—— — s {Buv + *[T (1+— —Tg— —— T —~nv]}exp(—— *)—t—nv. (27
XEXP( ny )+ g — 1y % P 1}3) O g e P !

For the second overloading variant (Fig. 3b) in the section MA (To < 7 < Ty)

e M3 N3 s - LE
T— Tya— Te + ——+————-+———+n>1+n — 7 == 150.
v ¢ (61 (U ®, 2 2 &, s 28)
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Taking 7 — 71’2 — Te = exp (ot) and proceeding by analogy with the cases presented above for the first

initial condition 7(0) = 74 — ?1,2 [the second one remains the same as in (12}, (18), and (26)], we find the solu-
tion of (28):

. > - x l
T="Tys+ Tc+ {"73—2"71,2 —Te —-.‘n—l@"*—‘[(}")wll —_——
o — N ny
- t ning
X (2145 + Te 4 MU —Ts)J}eXP(— + ) + {”71—'2*—
H31 e — Ay
1 .~ t
X {@.,,v— P 27+ T+ M0 — Ts)J}exp (— . ) -k Ngv. (29)
1 2
In the section AN (1, < T < 7()
M

The equation for the unloading along AN is

R L L [m+ m(1+ %)]wmn;&:mv. 0
\ 3 \ 2

Taking 7 — 7 + _1';’2 [1+(n1/n3)] =exp(at) and using 7(0) = 7 as the first initial condition [the second one re-
mains the same as in (12}, (18), and (26)}, we obtain the solution of (30) in the form

T=To—_';1,z(l -+ i) + {Tc_'ro‘i‘;,z(l + &)'—‘ﬂiv

Ns | Lk
nans A - - t nang o1
= — |04 — (Tc—— To+ T+ Tig— — N0 exp (- = —— | B.v + —
ng — N3 n3 \ 13 na ny —ns n3
= - / t
X (Tc—‘ To+ Tz + T2 S 111”)] €xp (‘— —) + M. (31)
N3 ng

The proposed rheological model (Fig. 1) reflects the "shelf" at the maximum value of ¥ = const = v ob-
tained in our experiments on a cement test with the repeated application of i’max- Such a "shelf" was also
observed in the tests of other authors, such as [7].

The procedure for determining the rheological characteristics entering into Eqs. (27) and (31) does not
differ from that described in the preceding section.

Area of Thixotropy Loop

For the first unloading variant (Fig. 3a)
(T3 ——7;,,2 — T, + ATy AT
LI
(vs— T (s + Mg
on3
2 20 RIS — LY ) 2
N3 | Typ 1 (Ts—Te) || Ts—To+ a (T3 — T} | M M+ Ma)(Ts — T)
3 . 3
2nn3
For the second unloading variant (Fig. 3b), using the obvious equality Sthixotr. II + SNACK — SBCL +
SAMBD» We arrive at the expression
2| - Lh ! oy ) -
oy 1 Te— Tyal | —)J—-Y]T,("]-Hla) > -
23 [To 'n,_( + T )] e Tz -+ Mo 1Ty,2 (M n T2 (Ta— Ty, — Te) (1 + M) (33
Sthixotr 1™ 203y N1Ms
The area of the figure in the T— ¥ axes has the physical meaning of power per unit volume. I [8] it is
treated as the power required to accomplish steady flow, and is comprised of the power required to maintain
Newtonian flow with ¥ = ¥, and of the power required to destroy the structure of a consistent medium at the

SDCEN = DC DN sin’ﬁ =

Sape = Sape~— Sasp =

S thixotr. 1= SpCEN — Sape = (32)

"t
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Fig, 4. Diagram of calculation of the coefficient of
specific thixotropy area. Dashed line) experimentally
determined thixotropy area, replaced by the polygonal
area when using the least-squares method, in accor-
dance with Fig, 3a,b.

same value of ¥ = 7 - In the present report this specific power characterizes the "memory" of the medium
for the previous mechanical action, in the given case, to the stepwise increase in ¥ = const along the NPA
branch of Fig. 3a or the KLD branch of Fig. 3b, while the numerical value of the thixotropy is proportional to
the numerical value of this "memory."

In our experiments in determining the thixotropy area of a cement mixture containing crushed sand in a
ratio of 1,5:1 by weight and a water content of 0.35 of the weight of dry components (¥ = const was varied in
the range of 1-530 sec™ ! using a Rheotest RV rotaryviscosimeter) the specific power (the area of the thixotropy
loop) was 21074 J.sec™!.m™3,

However, the absolute value of the specific power is insufficiently informative by itself, We therefore
introduce the concept of the "coefficient of specific thixotropy area® Sspr

___ Sthixow (%)

S, +
sp 0.573; (34)

which represents the ratio of the area of the thixotropy loop at the ordinate v, of the "shelf" to the area charac-
terizing the power required:to maintain Newtonian flow (Fig. 4). This coefficient (its value is 0.16 in our ex-
periment) characterizes the contribution of the thixotropic structure destruction to the viscoplastic flow of the
medium.

NOTATION

T, ¥, shear stress and shear strain; YegstII, establishedflow velocity in the section Te<T<74; t, time;
N, Mgs M3, M*, greatest plastic viscosity of practically undestroyed structure, viscosity of elastic lag, vis-
cosity of start of structure destruction, and plastic viscosity of structure destruction, respectively; m=n,6, ,
stress relaxation time; n,=1,/6, , delay (retardation) time of elastic strain; 6, 6, Gw=6,6,/(6,+6,), shear moduli
of instantaneous and lag elasticity and long-term elastic shear modulus; n;", ny, n3, ny, reduced coefficients of
relaxation — retardation phenomena; 7y, T¢, 74, ?1 s ?2 , plasticity limits of start of flow of practically unde-
stroyed structure, of start of structure destruction, of end of structure destruction (start of emergence onto
Newtonian section), and generalized St, Venant elements in Hooke and Kelvin elements of model in Fig, 1;
?1,2’ maximum value of 7 for Hooke and Kelvin elements; T3, current value of stressinthe section o <7 <
74 of structure destruction,
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CPTIMIZED COMPOUND CURRENT LEADS

V. K. Litvinov, V. I. Kurochkin, UDC 536,483
and V, I, Karlashchuk

A method is given that provides an acceptable approximation to minimizing the energy consump-
tion on the basis of the finite heat-transfer coefficient and the additional heat sources.

Economy and reliability of the current leads are frequently the decisive factors in the design of a cryo-
genic magnet system. Here we present some results from theoretical studies on optimized leads that enable
one to implement designs providing maximum economy and reliability at the drafting stage.

Detailed studies have been made [1-5| on current leads by means of the recuperation coefficient 8, which
represents the criterion for nonideal cooling. It is assumed that the recuperation coefficient is known from
experiment for leads of constant cross section and that the value is in the range 0.5 = B < 1; the heat-transfer
coefficient defines the actual cooling process, and this can be used in a method in which § is a specified cri-
terion for minimizing the energy consumption [6]. Then the recuperation coefficient is governed by the spe-
cified temperature differences along the normal part of the current lead. The method allows one to use a
specified deviation from minimum energy consumption in calculating the geometrical parameters of the lead
when this is of variable cross section and the local heat-transfer coefficients are known,

We consider the heat-balance equation for a lead in the stationary one-dimensional approximation [1-5]:

2
dg = cpm ar, . Pp) , 6}
dT ar q
dx AS
— 2
T . (2)

and the expression for the current dimensions, which is derived by transforming (2) in conjunction with the
equation for the heat balance involving the cooling vapor in the steady-state one-dimensional approximation.

We also assume that the thermal conductivity of the cooling vapor is negligible and that the heat-transfer
conditions are identical over the entire surface of the lead:
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